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D− centres in low dimensions: the strong-confinement
approach
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Comisíon Nacional de Energı́a Atómica, Centro At́omico Bariloche and Instituto Balseiro, 8400
Bariloche, Argentina

Received 18 December 1995

Abstract. Negatively charged centres (D−) formed in semiconductors by attaching a second
electron to a shallow neutral hydrogenic donor (D0) have been analysed in the quasi-zero- and
quasi-one-dimensional limits. On the basis of the present and already known results for higher
dimensions, it is proposed that D− ions support one and only one stable configuration which
evolves continuously from the three-dimensional to the zero-dimensional limit.

The interplay between the lowering of one of the physical dimensions in semiconductor
heterostructures and the behaviour of shallow impurities immersed in these quasi-two-
dimensional artificial solids proved to be quite fruitful in the last decade, a prime example
being their binding energy dependence on quantum well size and impurity position [1].
While most of this work concentrates on neutral donor and acceptor configurations,
negatively charged donor centres (the solid-state analogue of the H− ion of atomic physics)
have recently received increasing attention. Huantet al [2] have identified D− states in a
quasi-two-dimensional environment of a GaAs quantum well surrounded by AlxGa1−xAs
barriers. This report was followed by other experimental [3] and theoretical [4, 5] works.

Motivated by these results and the advance in confinement techniques, which opens
the way to the fabrication of quasi-one-dimensional (quantum wires (QW)) and quasi-zero-
dimensional (quantum dots (QD)) dynamically confined systems, the question of the number
of stable configurations (bound states) of D− centres in low dimensions arises. This question
has a rigorous answer in 3D, where according to the Hill theorem [6], the D− ion supports
one and only one bound singlet state. In 2D, while to the best of our knowledge no
equivalent rigorous proof exists, from all the above-quoted experiments and calculations
growing evidence builds of the existence of only one bound state.

We provide in this letter strong evidence that a negatively charged hydrogenic donor
impurity supports one and only one stable configuration in any of the physically accessible
dimensions. The theoretical models that we use are idealized, as we are interested more in
conceptual than in quantitative results; we begin with the QD case.

(a) Quantum dot. The Hamiltonian for a D− centre within a spherical quantum well
with infinite barriers can be written as the sum of the kinetic energy

− 1

λ2
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† Present address: Departamento de Fı́sica, Pontif́ıcia Universidade Católica do Rio de Janeiro, Caixa Postal
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and the Coulomb interactions among both electrons and the impurity

−1

λ
[U(r1, ri ) + U(r2, ri ) − U(r1, r2)] ≡ −1

λ
V (2)

where λ = R/a∗
0 (R and a∗

0 being the dot and effective Bohr radius, respectively),
r1, r2 (ri ) are the electron (impurity) coordinates,∇2

1 and ∇2
2 are 3D Laplacians, and

U(r, r′) = 2/|r − r′|. In writing equations (1) and (2), we use the effective Rydberg
R∗ = m∗e4/2h̄2ε2 as the energy unit (withm∗ and ε the effective mass and dielectric
constant of the semiconductor well acting material) andR as the length unit.

The kinetic energy and Coulomb interactions scale likeλ−2 andλ−1, respectively. Thus
the former dominates at smallλ. In this strong-confinement limit, the Coulomb interactions
of equation (2) can be treated by standard perturbation theory, using the eigenfunctions of
H0 as zero-order solutions. This technique was applied in [7, 8, 9] to study the stability of
biexcitons in semiconductor quantum dots.

The zero-order wave functions are the products of the one-particle kinetic energy
eigenfunctions in the sphereψ(r) with the boundary conditionψ(r)r=1 = 0. The solutions
finite at the origin areψn`m(r) = Nn`j`(kr)Y`m(θ, φ) with energy E = k2; Nn` is a
normalization constant,j`(kr) are the spherical Bessel functions, andY`m are the spherical
harmonics. The wave function must vanish at the boundaryj`(k) = 0 giving the eigenvalue
spectrumkn` = xn` wherexn` is thenth zero of thè th spherical Bessel function [10]. The
normalization integral can be evaluated to giveN2

n` = 2/j2
`+1(xn`).

We define the binding energy of the D− centres as

EB = (ED0 + E0) − ED− (3)

where the first two terms represent the energy of the ‘unbound’ configuration, with an
electron attached to the impurity in the neutral configuration(ED0), and the second electron
in the lowest available energy state for a free electron in the quantum dot(E0). The last
term corresponds to the ‘bound’ configuration, with both electrons attached to the impurity.
The use of quotes reflects the fact that in a 0D situation there is no continuum (unlike
for higher-dimensionality cases) and all states are spatially localized, making the physical
meaning of the ‘unbound’ configuration unclear; accordingly, let us try to explain this point
in more detail. Assuming that we have a more or less homogeneous distribution (same size)
of quantum dots, with some of them, as a result of doping, containing a donor impurity
with its corresponding electron (the D0 configuration), we ask the following question: if
an electron surplus is available to the system [2, 11], will the electrons go to the impurity-
occupied dots (forming D− centres) or to the empty dots? The response to this fundamental
question which pertains to the very existence of 0D D− centres is given by equation (3):
a positive (negative) sign ofEB implies the stability (instability) of the negatively charged
centre against the neutral configuration.

Application of standard perturbation theory forED0 and ED− up to second order inλ
yields the following expansion for the binding energy:

EB = 1

λ
E

(1)
B + E

(2)
B + O(λ). (4)

In deriving equation (4) it has been assumed that the zero-order wave function of the
neutral configuration corresponds to the single electron in the ground one-particle state
|0〉 (0 stands for the set of quantum numbers(n = 1, l = 0, m = 0) describing the one-
particle ground state); accordingly, the zero-order wave function of the D− configuration has
been taken as the two-particle ground state|0, 0〉. In calculating the binding energy given
by equation (3) these zero-order contributions (of order 1/λ2) cancel, and consequently
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Figure 1. The binding energy of D− centres in quantum dots as a function of impurity position,
for several sizes of the quantum dot. The dotted line corresponds to the first-order contribution,
while the full lines include the second-order contribution.

Figure 2. The strong angular correlation between the two electrons as revealed by the on-centre
impurity radial-integrated probability densityP(γ ) versus the relative angle of the two electrons
γ .

the stability of the D− centre is determined by potential energy differences, as given by
equation (4). Explicit calculations of the one- and two-particle (singlet) ground-state matrix
elements of equation (4) yield the following analytic expression:

E
(1)
B (ri) = 2

[
α − sin(2πri)

2πri

− Cin(2πri)

]
(5)

with α ' 1.65 and Cin the cosine integral function [10]. Figure 1 displays the behaviour
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of E
(1)
B (ri) as a function of the impurity coordinate (dotted line); there exists a critical

coordinaterc
i , such that ifri < rc

i (ri > rc
i ) the D− configuration is stable (unstable). From

E
(1)
B (ri) = 0 we obtainrc

i ' 0.5; up to this order, this critical position is independent of
λ. The unbinding reflects the fact thatU(r1, ri ) and U(r2, ri ) in equation (2) decrease
as ri approaches the boundary (due to the vanishing of the wave function), while the
repulsionU(r1, r2) remains about the same. In figure 1 we give also the behaviour of
the binding energy (equation (4)) for several values ofλ; since the second-order correction
is independent ofλ, its importance decreases withλ, as the first-order correction scales
like 1/λ. For the particular case whereri = 0, we obtainEB(ri = 0) ' 1.30/λ + 0.08,
implying that for the worst case,λ = 1, the second-order contribution to the binding energy
represents a 6% correction to the first-order contribution. FromEB(ri) = 0 we obtain a
λ-dependentrc

i .
From the perturbed wave functions, it is possible to gain some insight into the spatial

electronic distribution. As an example, figure 2 shows theri = 0 probability density
integrated over the two radial coordinates, as a function of the relative angle. The dotted
line corresponds to the zero-order solution, and obviously no angular correlation exists at
this level of approximation. The first-order corrections for several values ofλ are given
by the full lines: an angular correlation exists between the two electrons, as the integrated
probability density has a minimum whenγ = 0 = 2π and a maximum whenγ = π .
This spatial configuration minimizes the Coulomb repulsion between the two electrons and
explains the improvement of the binding energy with respect to the zero-order result, for
which the binding energy is zero. Similar considerations hold in the 3D, 2D, and 1D (see
below) cases, but while in these three cases the binding is the result of angular and radial
(with ‘inner’ and ‘outer’ electrons) correlations in the 0D case the binding is essentially
given by angular correlations, the radial degrees of freedom being ‘frozen’ in the strong-
confinement limit.

The absence of additional stable states arises from equation (4), by assuming for the
D− centre a configuration where one electron is in the ground single-particle state, and
the second is in the first excited state (singlet and triplet spin states are allowed in this
case). While in the ground-state configuration, a cancellation occurs among the zero-order
contributions, no such cancellation occurs in the excited configuration. We obtain a negative
zero-order contribution that goes like 1/λ2 and consequently is the leading contribution to
the binding energy in theλ � 1 limit. This result is independent of the spin configuration;
differences between singlet and triplet spin states arise in the next order of perturbation.
We are led to the rigorous and important conclusion that the D− ion supports one and only
one stable state in the 0D or strong-confinement limit.

(b) Quantum wire. In a quasi-one-dimensional situation the simplified model that we
use consists of a cylindrical QW with infinite barriers atρ = R, whereR is the cylinder
radius. Usinga∗

0 as the unit of length, the HamiltonianH = H0 + V can be written as

H0 = −(∇2
1 + ∇2

2) (6)

V = −
(

∂2

∂z2
1

+ ∂2

∂z2
2

)
− [U(r1, ri ) + U(r2, ri ) − U(r1, r2)] (7)

where∇2 represents now a 3D Laplacian in cylindrical coordinates, but without the∂2/∂z2

term that is included inV . This particular distribution of kinetic and interaction terms
allows for an approximate separability of the interacting two-electron wave function in the
quasi-one-dimensional limitR/a∗

0 � 1 . Thus we can approximate the interacting two-
electron wave function byψ(r1, r2) ' f (ρ1)f (ρ2)φ(z1, z2), wheref (ρ) = J0(α0ρ/R) is
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Figure 3. The variational binding energy for a D− centre in a quasi-one-dimensional
environment. In the absence of electron–electron correlations in the Chandrasekhar-type trial
wave function (c1 = c2 = 0) the negatively charged configuration is unstable, but when they
are incorporated, large binding energies are obtained.

the ground-state solution forH0 which is finite at the origin and satisfies the boundary
conditionf (R, θ) = 0; J0 is the normalized Bessel function andα0 the first zero ofJ0.

Elimination of the radial degrees of freedom proceeds now via the calculation of

Veff (z1, z2) =
∫ ∫

dρ1 dρ2 ρ1ρ2f (ρ1)f (ρ2)V ψ(r1, r2) (8)

which produces an effective one-dimensional Schrödinger equation forφ(z1, z2), with
effective electron–impurity and electron–electron Coulomb potentials. These are given
by integrals over the radial coordinates that should be calculated numerically, resulting
in one-dimensional potentials that are finite at the origin.

We have performed a variational solution of (8), using forφ(z1, z2) a generalized singlet
Chandrasekhar-type trial wave function [12]

φ(z1, z2) = Wβ(z1)Wβ(z2)[1 + c1|z1 − z2| + c2|z1 − z2|2] (9)

whereWβ(z) is the Whittaker function, andc1, c2 are variational parameters. The Whittaker
wave functions are solutions for the one-dimensional hydrogen atom studied by Loudon [13],
and depend on the energy-related parameterβ, which in turn depends on the wire radius
R, through the effective one-dimensional potentials. Equation (9), withc1 = c2 = 0 is the
exact solution of (8) in the absence of effective electron–electron interactions. The rationale
behind this variational wave function is that whenc1 and c2 are different from zero and
positive, the electrons are encouraged to stay apart, decreasing their repulsive interaction
energy.

We fitted the numerical electron–impurity and electron–electron potentials of (8) with
analytical regularized Coulomb potentials 1/(|z|+a) of the type used by Loudon in his study
of the 1D hydrogen atom [14]. With these potentials to hand, the calculation ofβ amounts
to finding the ground-state solution of the eigenvalue equation of the 1D hydrogen atom.
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The energy of the D− configuration is given byED− = min〈φ|Veff |φ〉/〈φ|φ〉, where min
represents minimization with respect toc1 andc2. Since according to [13]ED0 = −1/β2,
the binding energy is given by−1/β2 − ED− . While the calculation scheme allows for
arbitrary impurity positions, for the sake of simplicity we have restricted ourselves to the
on-axis case (ri = 0).

The results for the QW binding energy versus wire radius are given in figure 3: as
in the quantum dot case, we found that the binding energy increases monotonically when
the wire size decreases. However, and unlike in the previous case, correlations are crucial
for the QW. As is seen from figure 3, whenc1 = c2 = 0 and correlation effects are not
included in the trial wave function (9) the system is unbounded. Binding occurs as soon
asc1 or c2 is variationally optimized, the optimum choice corresponding to the case where
both are variationally determined, as expected. The result forc1 6= 0, c2 = 0 is quite close
to the binding energy forc1, c2 6= 0, which makes one confident about the soundness of
the series expansion in powers of|z1 − z2| implied in equation (9). Furthermore,c1 andc2

increase monotonically when the wire radius decreases (not shown), revealing the increasing
importance of electron–electron correlations as the truly one-dimensional limit is reached.

Figure 4. Contour plots of the probability densityP(z1, z2) when R = a∗
0/2. Case (a) is for

c1 = c2 = 0, and case (b) forc1 6= c2 6= 0. The inner and outer probability densities are also
indicated, the remaining densities being equally spaced between these two values.

The consequences of electron correlations are even more transparent from the contour
plots of the probability densityP(z1, z2) = |φ(z1, z2)|2/〈φ|φ〉 shown in figure 4. In the
absence of correlations (figure 4(a)), two points should be noticed: first, the probability
density along the linez1 = z2 is exactly the same as that alongz1 = −z2, and second, at
lower densities the configuration with|z1| � |z2| (or vice versa) has a higher probability
than that with|z1| ' |z2|. For the highest densities, in contrast, the probability density
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has an almost perfect rotational symmetry. Dramatic changes are found when correlations
are included in the calculation (figure 4(b)): in particular the ‘dip’ atz1 = z2 reflects the
fact that due to Coulomb repulsion the electrons try to avoid each other. The spreading
of the probability density is larger than in the previous case, reflecting the fact that the
electronic structure of the D− ion is rather open. Finally, the configuration inner–outer
electron is observed even at the highest densities, which is reminiscent of the situation for
higher dimensionalities.

Let us compare our results with previous work. Zhuet al [15] have studied the problem
of D− centres in spherical quantum dots; using a Chandrasekhar-type trial function they
found a singlet stable state. The use of a variational technique made it impossible for
them to reach a definite conclusion on the number of stable states; besides, they restrict
the calculation to the on-centre impurity case, missing the unbinding found in the present
work whenri ' 0.5. We are not aware of any calculation on the properties of D− centres
in semiconductor QW. As a final remark, let us emphasize that the results that we found in
the present work are qualitatively quite different from those of previous studies of 2D and
3D D− centres under strong magnetic fields (which can naively be identified with our QD
and QW configurations, respectively):severalbounded states were predicted for 2D D−

centres in the high-magnetic-field limit [5], and it is well known that any finite magnetic
field gives rise to aninfinite number of bound states in the case of 3D D− centres [16].

In summary, by application of standard perturbation in 0D and variational calculations in
1D we found that the D− supports a stable state. While the strong-confinement approach to
the 0D case allows us to exclude rigorously the possibility of additional stable states, on the
basis of our results we cannot eliminate this possibility for the QW. However, on the basis
of the well-known results for 3D, and the growing understanding for 2D, we advance the
hypothesis that the D− centre supports only one stable state over the whole range of physical
dimensions from 3D to 0D. Quantum-confined semiconductor heterostructures seem to be
ideal candidates for the role of testing this prediction.

We would like to express our gratitude to V Grunfeld and A López for a careful reading of
the manuscript.
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